Divergent structure and regulatory mechanism of proline catabolic systems: characterization of the putAP proline catabolic operon of Pseudomonas aeruginosa PAO1 and its regulation by PruR, an AraC/XylS family protein.

نویسندگان

  • Yuji Nakada
  • Takayuki Nishijyo
  • Yoshifumi Itoh
چکیده

Pseudomonas aeruginosa PAO1 utilizes proline as the sole source of carbon and nitrogen via a bifunctional enzyme (the putA gene product) that has both proline dehydrogenase (EC 1.5.99.8) and pyrroline 5-carboxylate dehydrogenase (EC 1.5.1.12) activities. We characterized the pruR-putAP loci encoding the proline catabolic system of this strain. In contrast to the putA and putP (encoding proline permease) genes of other gram- negative bacteria, which are located at divergent or separate loci, Northern blotting demonstrated that the two genes form an operon in strain PAO1. While the phylogenetic lineage of the PutP protein of strain PAO1 was related to that of the origin (80% identity to the P. putida counterpart), PutA of PAO1 (PutA(PAO)) was rather distantly related (47% identity) to the P. putida counterpart. Moreover, unlike the PutA proteins of P. putida and enteric bacteria, PutA(PAO) appeared to lack a regulatory function. Upstream of the putAP operon, the divergent PA0781 gene specified a hypothetical outer membrane protein with a molecular weight of 74,202. This gene appeared to be dispensable for proline utilization as indicated by the normal growth of a knockout mutant of PA0781 on medium containing proline. The pruR (proline utilization regulator) gene immediately upstream of PA0781 encoded a transcriptional activator of the AraC/XylS protein family and mediated the proline-responsive expression of putAP. Primer extension studies identified a PruR-dependent promoter responsive to proline in the 5'-flanking region of putA. Thus, the proline utilization system of P. aeruginosa differs from that of P. putida with respect to putA structure, the organization of the putAP genes, and the regulatory mechanism of putA expression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PutA Is Required for Virulence and Regulated by PruR in Pseudomonas aeruginosa

Pseudomonas aeruginosa, a Gram-negative opportunistic pathogenic bacterium, causes acute and chronic infections. Upon entering the host, P. aeruginosa alters global gene expression to adapt to host environment and avoid clearance by the host immune system. Proline utilization A (PutA) is a bifunctional enzyme, which converts proline to glutamate. Here we report that PutA was required for the vi...

متن کامل

Cloning and characterization of argR, a gene that participates in regulation of arginine biosynthesis and catabolism in Pseudomonas aeruginosa PAO1.

Gel retardation experiments indicated the presence in Pseudomonas aeruginosa cell extracts of an arginine-inducible DNA-binding protein that interacts with the control regions for the car and argF operons, encoding carbamoylphosphate synthetase and anabolic ornithine carbamoyltransferase, respectively. Both enzymes are required for arginine biosynthesis. The use of a combination of transposon m...

متن کامل

Regulation of ornithine utilization in Pseudomonas aeruginosa (PAO1) is mediated by a transcriptional regulator, OruR.

We have used transpositional mutagenesis of a proline auxotroph (PAO951) to isolate an ornithine utilization (oru) mutant of Pseudomonas aeruginosa (PAO951-4) that was unable to use ornithine efficiently as the sole carbon and nitrogen source. DNA sequence analysis of the inactivated locus confirmed that the transposon had inserted into a locus whose product demonstrated significant primary seq...

متن کامل

Transcriptional Regulation of Carnitine Catabolism in Pseudomonas aeruginosa by CdhR

The common environmental bacterium and opportunistic pathogen Pseudomonas aeruginosa encodes diverse metabolic pathways and associated regulatory networks allowing it to thrive in these different environments. In an effort to understand P. aeruginosa metabolism and detection of host-derived compounds, we previously identified CdhR and GbdR as members of the AraC transcription factor family that...

متن کامل

One-step purification and characterization of alginate lyase from a clinical Pseudomonas aeruginosa with destructive activity on bacterial biofilm

Objective(s): Pseudomonas aeruginosais a Gram-negative and aerobic rod bacterium that displays mucoid and non-mucoid phenotype. Mucoid strains secrete alginate, which is the main agent of biofilms in chronic P. aeruginosa infections, show high resistance to antibiotics; consequently, the biological disruption of mucoid P. aeruginosa biofilms is an attractive area of study for researchers. Algin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 184 20  شماره 

صفحات  -

تاریخ انتشار 2002